Identification of *cis*-elements for ethylene and circadian regulation of the *Solanum melongena* gene encoding cysteine proteinase*

Reetika Rawat¹, Zeng-Fu Xu^{1,3}, Kwok-Ming Yao² and Mee-Len Chye^{1,*}

¹Department of Botany, The University of Hong Kong, Pokfulam Road, Hong Kong, China (*author for correspondence; e-mail mlchye@hkucc.hku.hk); ²Department of Biochemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China; ³Present address: Key Laboratory of Gene Engineering of MOE, Zhongshan University, Guangzhou 510275, China

Received 13 September 2004; accepted in revised form 19 January 2005

Key words: DNase I footprinting, eggplant, EMSA, ethylene-responsive element, evening element, promoter analysis

Abstract

We have previously shown that the expression of SmCP which encodes Solanum melongena cysteine proteinase is ethylene-inducible and is under circadian control. To understand the regulation of SmCP, a 1.34-kb SmCP 5'-flanking region and its deletion derivatives were analyzed for cis-elements using GUS and luc fusions and by in vitro binding assays. Analysis of transgenic tobacco transformed with SmCP promoter-GUS constructs confirmed that the promoter region -415/+54 containing Ethylene Responsive Element ERE(-355/-348) conferred threefold ethylene-induction of GUS expression, while -827/+54which also contains ERE(-683/-676), produced fivefold induction. Using gel mobility shift assays, we demonstrated that each ERE binds nuclear proteins from both ethephon-treated and untreated 5-week-old seedlings, suggesting that different transcriptions factors bind each ERE under varying physiological conditions. Binding was also observed in extracts from senescent, but not young, fruits. The variation in binding at the EREs in fruits and seedlings imply that organ-specific factors may participate in binding. Analysis of transgenic tobacco expressing various SmCP promoter-luc constructs containing wild-type or mutant Evening Elements (EEs) confirmed that both conserved EEs at -795/-787 and -785/-777 are important in circadian control. We confirmed the binding of total nuclear proteins to EEs in gel mobility shift assays and in DNase I footprinting. Our results suggest that multiple proteins bind the EEs which are conserved in plants other than Arabidopsis and that functional EEs and EREs are present in the 5'-flanking region of a gene encoding cysteine proteinase.

Introduction

Circadian rhythms are controlled by the 24-h clock and occur in prokaryotes and eukaryotes (Barak *et al.*, 2000). In plants, biological processes such as chloroplast movement, stomatal opening, leaf movements, and hypocotyl elongation are under circadian regulation (reviewed in Barak *et al.*, 2000). The core mechanism in circadian biology of all organisms is composed of a negative feedback loop, with positive and negative transcriptional regulators (Dunlap, 1999). Recent studies on *Arabidopsis* circadian rhythms have identified TIMING OF CAB EXPRESSION 1 (TOC1), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) as the main components of the core oscillator (Schaffer *et al.*, 1998; Wang and Tobin, 1998; Strayer *et al.*, 2000;

^{*} EMBL/GenBank Data Library accession number(s) AF101032 (promoter of *S. melongena* cysteine proteinase gene, *SmCP*).

Matsushika *et al.*, 2002). Microarray experiments suggest that 6% of *Arabidopsis* genes express mRNAs that peak at different times in the 24-h clock (Harmer *et al.*, 2000). These genes can be further divided into six clusters based on peak expression time (Harmer *et al.*, 2000).

Computational studies, deletion analysis and site-directed mutagenesis have identified a conserved EE motif [(AA)AATATCT] in the promoters of genes with peak expression in late light (Harmer et al., 2000; Xu and Johnson, 2001; Michael and McClung, 2002). The EE differs only by a single nucleotide (bolded) from the CCA1binding site (AAAAAATCT), the morning element in promoters of genes showing peak expression in early light (Michael and McClung, 2002). In the CATALASE 3 promoter, a T to A substitution in the EE converted it to a morning element resulting in peak expression in early light (Michael and McClung, 2002). Alabadí et al. (2001) showed that peak expression of TOC1 occurs in late light, its promoter has a conserved EE and the overexpression of either LHY or CCA1 leads to a disruption of circadian regulation and a decline in TOC1 mRNA, indicating that both CCA1 and LHY are negative regulators of TOC1 expression. Although E. coli-expressed recombinant CCA1 and LHY has each been shown to bind the EE in the TOC1 promoter (Alabadí et al., 2001), neither in vitro binding of total nuclear protein extracts to the EE nor DNase I footprints at the EE has been previously reported.

The G-box occurs in a broad range of plant promoters that are affected by environmental cues. It is also a light-regulated motif (Chattopadhyay *et al.*, 1998; Xu and Johnson, 2001) and has the same consensus sequence as the E-box of animal gene promoters that functions as a circadian enhancer motif (Hao *et al.*, 1997; Dunlap, 1999). Using *in vitro* binding studies, Martinez-Garcia *et al.* (2000) demonstrated that the transcription factor PIF3 specifically binds the G-box at promoters of light-regulated *Arabidopsis* genes like *CCA1*, *LHY*, *SPA1* and *RBCS-1A* and interacts with the light-activated form of phytochrome B.

Ethylene is an endogenous hormone regulating many plant processes from seed germination to plant senescence (Bleecker and Kende, 2000) and acts as a stress hormone during adverse biotic and abiotic conditions. The promoters of various genes that are ethylene-inducible contain EREs. An 8-nucleotide ERE (ATTTCAAA) in the carnation *GST1* promoter mediating senescence-related expression, was identified by DNase I footprinting (Itzhaki *et al.*, 1994). It shows significant homology to the ERE (AAATTCAAA) of the tomato *E4* promoter, and lies within a larger region protected from DNase I digestion (Montgomery *et al.*, 1993). The GCC box in promoters of defense-related genes also mediates ethylene-responsiveness (Ohme-Takagi and Shinshi 1990; Eyal *et al.*, 1993), but has not been identified in promoters of genes associated with fruit ripening or petal senescence, suggesting that these *cis*-elements are distinct (Ohme-Takagi *et al.*, 2000).

We have cloned and characterized SmCP which encodes a cysteine proteinase in Solanum melongena (Xu and Chye, 1999). The localization of SmCP mRNA by in situ hybridization revealed that its expression coincides with developmental events leading to programmed cell death in plant tissues, suggesting its role in protein degradation (Xu and Chye, 1999). Northern blot analysis has shown that its mRNA is ethylene-inducible and is under circadian control with peak expression in late light (Xu et al., 2003). We have previously observed that *SmCP* and *rbcS* differ in their peak expression times and had suggested that protein degradation and photosynthesis, which are catabolic and anabolic events, respectively, could be separated by circadian regulation in opposite phases to maximize their functions (Xu et al., 2003). Expression of tobacco cysteine proteinase CYP-8 mRNA also peaks in late light (Linthorst et al., 1993), but the molecular basis for circadian control of any cysteine proteinase gene promoter has yet to be established. We have already shown by EMSA and DNase I footprinting that a G-box (CACGTG) is located at -85/-80 in the 5'-flanking region of SmCP (Xu et al., 2003). G-box binding activity was stronger in senescent than young fruits, and in circadian-regulated leaves, stronger binding activity coincided with peak circadian expression of SmCP, suggesting that G-box binding coincides with enhanced SmCP transcription (Xu et al., 2003). In order to further understand the regulation of SmCP, we identify here the cis-elements (EREs and EEs) in the SmCP promoter and show their importance in gene regulation. We present evidence in EMSA and in DNase I footprinting that total nuclear proteins bind the EEs.

Materials and methods

Plant material, growth conditions and ethephon treatment

Eggplant/brinjal (S. melongena) and tobacco (Nicotiana tabacum var Xanthi) were grown in a growth chamber at 24 °C under a light/dark regime of 12 h light (08:00-20:00)/12 h dark (20:00-08:00). Five-week-old S. melongena or transgenic tobacco seedlings were sprayed with ethephon following Greenberg and Ausubel (1993). Samples from treated and control S. melongena seedlings were harvested 24 h after spray for nuclear protein extraction. Northern blot analysis was also carried out using RNA samples from ethephon-treated and control seedlings, 24 h after treatment, to confirm ethephon-induction of SmCP expression in nuclear protein extracts before they were used in EMSAs.

Northern blot analysis

Total RNA was isolated from S. melongena by the method of Nagy et al. (1988) and northern blot analysis was carried out as previously described by Xu et al. (2003). Total RNA (20 µg) was denatured at 50 °C in the presence of glyoxal, separated by electrophoresis in 1.5% agarose gel and blotted onto Hybond-N (Amersham) membrane. To ensure that equal amounts of RNA were used, RNA was stained with ethidium bromide after gel electrophoresis. The RNA blot was hybridized at 42 °C with $[^{32}P]dCTP$ -labeled SmCP cDNA in a solution containing 50% deionized formamide, $1 \times$ Denhardt's solution, $6 \times$ SSPE, 0.1% SDS, 100 μ g/ ml denatured sonicated salmon sperm DNA and 10% dextran sulfate. The blot was washed at 65 °C in 0.1× SSC, 0.1% SDS. Bands were detected by autoradiography.

Construction of SmCP promoter-GUS fusions

Various deletions of the *SmCP* 5'-flanking region were PCR-amplified using different primer pairs (Figures 1 and 2A) and plasmid pSm8 DNA as template. Plasmid pSm8 is a pBluescript derivative that contains *SmCP* on a 5-kb *Eco*RI genomic DNA fragment (Xu *et al.*, 2003). Each 25-µl PCR reaction consisted of 50 ng pSm8 DNA, 10 pmol of each primer, 1U *Taq* polymerase (Perkin

ML286 -1365 TTTCGACAAGTTATATATATATAGTCRCCRTRCRTTTTACATAATTTTTGA -1315 TATTTTTAATATCAT AAAACTAATTAATTTATTATATAT AT ATTTAAAAATTA -1265 ACCCTTTAAAAAATGGGACAAATAATTTGAAATCGACTTATTCTCTAATT -1215 TEGCCCACTACTCAGTCCAAATECAGTTTATEGTACETCATECCTEATET -1165 GTACTTTTTTCTTTTTCCTTCTAATTTTCTTATGGGTTGCTGCTAGAGA -1115 GTTTTTGTCATATTGGACTTTTACACTAAAACTTTCTGATCACTTTAGAT -1065 TTTTCAGTCCTCTTGAAAAAGATATTTGATAATTACGTCTGATTTAACAA -1015 GAGATTTTTTTTAAGTAGTCAAAGTCATTCATTTTTAATTATTGATTTTA TT AAT AGTT CATTT AT AT AATTT AGTTT CACAT AT AAT A AAAT ATTG AAG 965 -915 TTATCCAACAACCTT AGGTTGCATTTGTGTATATCTGGT ACTTGCTAAGA 141.283 -865 TCAAGTGAGTTCCAT CCTCTTTAAATA AAAATTGTTTCRRCRTRT EF FF TGTGACAT -815 AT AT. TAATATCT -765 TTATTAATTTAATT GGATCTCATTCACTAG AGATCCTATTTTACATTTG RE-18341 -715 TTGACCCGCAAATTT CGATTTTTATGCTGAC AAACCCTTC AT CTTT GGAAAAGAAT ATT AGGAAAGATTT ATTTTTT ACT AGC ACTT AAT -665 -615 TTTTTCAAGATAAGGCAAGAATATTATTATTAAAAATAAAATGTGGGTCCC -565 AGAAAATGGTCTCCATGAAAAAGATATAAATAGATATTT CTATACCCTAT -515 -465 CCTCGATTCACATCAAAA -415 GAATT ATT AT ATTTTTT AAT AAAAAAT AAGTG RE-355634 AATTT GTT A BATT CAR -365 AGC ATT GTT C ATTTTTTTT AT ATTT AT GTTTT TAATGAATTTCTTAATTACTCACACTTTCAAG -315 AATAACTTGAAAAAA ML230 AAGATT AAAAGTGAGTC AAACAAT ATC AT ACTTTTT AAT TT ACTTRACK -265 GRACTAT GGAGAGA -215 AT GAAT AGATT AT AAT AAAAT A AT AAAAAT ACA ERE-141/134 ML231 AAAATTGTGRARTATA -165 GCTRCCRCRCGTATC -115 GT GT CR GCRT CR CR ML386 -65 GCT AACT CACATAC CT AACC AT GTT CT CG GAGC CAATATAT ACT CG RGTA GCTARREAGERGERGERGEREREATE CCGCATTCATTCTT CTTCATTCTTC -15 ML234 36 TTTTTATTATTATTT CTCCCATGGATCGTCTTTTTCTCTTATCTCTTCTC MT.382

Figure 1. Nucleotide sequence of the SmCP 5'-flanking region. The putative EREs and EEs are marked in gray boxes. Arrows indicate the location of the primers on the SmCP 5'-flanking sequence. The TATA box and the G-box are underlined. The ATG start codon is overlined. The start site of transcription (nucleotide A) as mapped by primer extension analysis (Xu et al., 2003) is marked +1.

Elmer), 2.5 μ l 10 × PCR buffer, 1.5 μ l of 25 mM MgCl₂ and 0.5 μ l each of 10 mM dNTPs. PCR was initiated with denaturation at 95 °C for 5 min, followed by 40 cycles of 94 °C for 30 min, 45 °C

for 30 s and 68 °C for 2 min, and extension at 72 °C for 10 min. The various PCR-generated fragments were cloned into vector pGEM-T Easy (Promega), in an orientation with the 5'-end of the *SmCP* promoter adjacent to the *SpeI* site on the polylinker of pGEM-T Easy. The PCR fragments in these pGEM-T Easy derivatives were then verified by DNA sequence analysis.

Subsequently, the various PCR-generated 5'-flanking sequences were fused to the GUS reporter gene in binary vector pBI101.3 (Clontech) which confers kanamycin-resistance (Jefferson et al., 1987). To this end, plasmid pSm11 (Figure 2A) was first created by cloning a Klenowtreated 552-bp NcoI-NcoI (-498/+54) fragment from pSm8 into the SmaI site of pBI101.3. A unique XhoI site (-23/-18) on the 552-bp SmCP promoter fragment and an upstream XbaI site on the polylinker region of pSm11 was used in cloning eight other promoter fragments flanking SmCP. The SpeI-XhoI 5'-fragment of each deletion was subcloned from the pGEM-T Easy derivative into the XbaI-XhoI sites of pSm11. Altogether nine deletions of the 5'-flanking region were analyzed (Figure 2A); the largest fragment (1.34-kb) contains putative EREs and EEs fused upstream of GUS (Figure 2).

Construction of SmCP promoter-luciferase fusions

SmCP promoter-luciferase (*SmCP* promoter-*luc*) fusions were made using the 1.7-kb firefly luciferase reporter gene from pGEM-luc (Promega). The XhoI site in pGEM-luc was destroyed by XhoI digestion followed by filling-in with Klenow to create plasmid pSm124. A 78-bp SmCP promoter fragment (-23/+54), PCR-amplified using for-ML386 5'-ATAAGCTTCward primer GAGTAGCTAAAGAGGAGA-3' (HindIII site underlined; SmCP 5'-flanking sequence bolded with XhoI site in italics) and reverse primer ML387 5'-ATGGATCCGGAGAAATAATAAT-3' (Bam-HI site underlined) in the pGEM-T Easy derivative pSm125, was cloned into the HindIII and BamHI sites of pSm124 to create pSm126. To generate various SmCP promoter-luc fusions in pBI101.3, the 1.8-kb XhoI-SacI GUS fragment from each SmCP promoter-GUS construct (SacI site at 3'-end of GUS) was replaced by the 1.7-kb *XhoI-SacI luc* fragment from the *SmCP* promoterluc plasmid pSm126.

To generate constructs with mutant EEs on the -827/+54 SmCP promoter fragment, three 0.8-kb PCR-amplified fragments were generated using template pSm8, reverse primer ML234, and either

Figure 2. Deletions generated in construction of SmCP promoter-GUS fusions for analysis of putative EREs. (A) Schematic representation of the SmCP 5'-end deletions indicated by black bars (not to the scale) with respect to the putative EEs and EREs. PCR primers used to generate these deletions are marked (arrows). (B) GUS activities of tobacco lines transgenic for SmCP promoter-GUS constructs. Plants were sprayed with ethephon, incubated for 24 h and assayed for GUS activity. Error bars indicate standard error of mean. Data represent the average of at least three independent tobacco transformants from the same construct.

one of forward primers ML429 5'-GTTTCAACA TATTGTGACATAATTATAATAATCCCCGCG CGTTTAATATCTG-3' (mutant EE -795 to -787 in bold), ML430 5'-GTTTCAACAT ATTGTGACATAATTATAATAATAAAAATA TATTGGCCGCGTGGAATTTATATTT-3' (mutant EE -785 to -777 in bold) or ML431 5'-GTTTCAACATATTGTGACATAATTATAA TAATCCCCGCGATTGGCCGCGCGGAATTTA TATTT-3' (mutant EEs -795 to -787 and -785 to -777 in bold). Each fragment was cloned into pGEM-T Easy in an orientation with the 5'-end of the SmCP promoter adjacent to the SpeI site on the polylinker of pGEM-T Easy. The PCR fragments in these pGEM-T Easy derivatives were then verified by DNA sequence analysis. Each SpeI-XhoI fragment of the SmCP promoter (-827/ +54) was subcloned from the pGEM-T Easy derivative into the XbaI-XhoI sites of pSm130 to generate pSm140, pSm141 and pSm142.

Generation of transgenic plants using Agrobacterium-mediated transformation

Constructs of the SmCP promoter fused to either GUS or luc were mobilized into Agrobacterium tumefaciens LBA4404 by triparental mating. Transgenic tobacco plants were generated by Agrobacterium-mediated transformation of leaf discs. Leaf explants $(0.5 \times 0.5 \text{ cm})$ from wild-type tobacco grown in vitro were soaked in Agrobacterium solution (OD₆₀₀ = 0.1 to 0.3, using UVspectrophotometer Shimadzu Model UV-1206) for about 10 min and transferred to plant regeneration medium containing MS basal (MSO, Murashige and Skoog, 1962) agar media (pH 5.8) supplemented with 6-benzylaminopurine (1 mg/ ml) and *a*-naphthalene-acetic acid (NAA) at 0.2 mg/ml final concentration. After co-cultivation for 2 days, the explants were washed in liquid MSO supplemented with carbenicillin (500 mg/l) for over 2 h to remove Agrobacterium and transferred to plant regeneration medium supplemented with kanamycin (100 mg/l) and carbenicillin (500 mg/l) for callus and shoot regeneration. After 3 weeks, shoots were subcultured onto MSO supplemented with NAA (0.1 mg/ml), kanamycin (200 mg/l) and carbenicillin (500 mg/l) for root regeneration. In ethylene-induction assays, transgenic tobacco transformed with plasmids pBI121

and pBI101.3 were used as positive and negative controls, respectively.

Seed sterilization and germination

Transgenic tobacco seeds were sterilized in 70% ethanol for 1 min followed by 10 min in 20% bleach (Chlorox) and washed thoroughly several times with sterilized water. After sterilization, seeds were germinated on MSO agar (0.8%) supplemented with kanamycin (200 mg/l), and transferred to soil in a growth chamber after 2 weeks. Control wild-type seeds were also sterilized the same way and germinated on MSO agar without antibiotic selection.

GUS assays

Leaf extracts from untreated and ethephon-treated seedling tissue, collected 24 h after treatment were analyzed for GUS activity by fluorometric quantification of 4-methylumbelliferone (MUG) using substrate β -D-glucuronide as described by Yang *et al.* (2000). Total protein concentration of the tissue homogenate was determined according to Bradford (1976) with the Protein Assay Kit I (BioRad). GUS activity was expressed as pmol of product generated per mg of total protein per min.

Luciferase assays

Replicates of leaves from individual transgenic lines were harvested in 1.5-ml eppendorf tubes, frozen in liquid nitrogen and stored at -80 °C until further use. The frozen tissue was ground to powder and resuspended at room temperature in luciferase extraction buffer containing 100 mM potassium phosphate buffer (pH 7.5) and 1 mM dithiothreitol (DTT), followed by centrifugation for 5 min at 4 °C as described by Ow et al. (1986). The supernatant was retained for measurement of luminescence using a microtiter plate-reader (PO-LARstar from BMG Technologies, USA). Measurements were read for 10 s with an initial 4 s delay. Tissue homogenate (40 μ l) was added in three replicates to a 96-well microtiter plate (Nunc Cat. No. 236105), and diluted with 60 μ l of luciferase extraction buffer before placing in the luminometer. Luciferase assay reagent (100 μ l) from Promega (Cat. No. 1511) was added to each well and read after a 4 s delay.

Preparation of nuclear proteins

Nuclear proteins were prepared following Martino-Catt and Kay (1994) from 5-week-old seedlings, grown in growth chambers at 24 °C with a 12 h light (08:00-20:00)/12 h dark (20:00-08:00) cycle. For binding studies involving EEs, samples were collected at peak (17:00) and low (06:00) circadian expression times as previously established by Xu *et al.* (2003). For binding studies involving EREs, samples from 5-week-old seedlings (ethephon-treated or untreated) were used.

S. melongena fruits are purple when young and on ripening changes colour to yellow at about 50 days after pollination (DAP) (Xu and Chye, 1999). Correspondingly, SmCP mRNA expression in fruits increases when the fruits turn yellow (Xu and Chye, 1999). We have previously used small purple fruits harvested 20 DAP as "young" fruit and yellow fruit harvested 60 DAP as "senescent" fruit (Xu and Chye, 1999). Here, for preparation of nuclear extracts for binding studies involving EREs, samples were harvested from small young (purple) fruits and senescent (yellow) fruits. Following protein determination (Bradford, 1976), aliquots of nuclear proteins were frozen in liquid nitrogen and stored at -80 °C until further use.

Electrophoretic mobility shift assays (EMSAs)

For binding studies to the EREs, two pairs of 40mers ML312/ML313 (Figure 3A) and ML304/ ML305 (Figure 4A) corresponding to the two putative EREs at -355/-348 and -683/-676 respectively, were synthesized, annealed and endlabeled with ³²P-dCTP by filling-in with Klenow. To investigate the specificity of the conserved sequence in binding, correspondingly pairs of ERE mutant 40-mers ML314/ML315 (Figure 3A) and ML306/ML307 (Figure 4A) were used in EMSA. The EEs(-795/-777) were investigated using ³²PdCTP-labeled probes consisting of annealed 40-mers ML425/ML426 containing the two putative EEs(-795/-787 and -785/-777) and the mutant probe ML427/ML428 for EE(-795/-787)mut (Figure 6A). Similarly, EMSAs on the EE(-785/-777) were investigated using ³²P-dCTPlabeled probes consisting of annealed mutant probe ML581/ML582 and wild-type probe ML425/426 (Figure 6A). Unlabeled oligonucleotides were used as competitors in binding.

The 32 P-dCTP-labeled mutant probes were mut1(-795/-792) ML587/ML588, mut2(-791/-788) ML589/ML590, mut3(-786/-784) ML591/ML592, mut4(-784/-781) ML585/ML586 and mut5(-780/-777) ML583/ML584 (Figure 7A). Binding reactions were carried out as according to Xu *et al.* (2003) and analyzed by running the reaction mix on a 6% non-denaturing polyacryl-amide gel, followed by drying and autoradiography.

DNase I footprinting at EEs

The coding strand probe was prepared by linearizing pGEM-T Easy (Promega) derivative pSm117 containing the SmCP promoter region (-827/ -706) with *NcoI* and end-labeling with ³²P-dCTP using Klenow. After removal of unincorporated ³²P-dCTP using Microspin G-25 columns (Amersham Pharmacia Biotech.), the ³²P-labeled probe was released from the labeled linearized plasmid by SpeI digestion. The probe was purified using a preparative non-denaturing 5% polyacrylamide gel. DNase I footprinting reactions were carried out as described previously (Xu et al., 2003), and Maxam-Gilbert sequencing (G+A) reactions of the labeled promoter fragments were performed according to Sambrook et al. (1989). Samples were analyzed on an 8% polyacrylamide sequencing gel followed by autoradiography of the dried gel.

Results

Identification of putative cis-elements in the SmCP 5'-flanking region

Our previous analysis of the SmCP 5'-flanking sequence had revealed the presence of a highly conserved 8-nucleotide ERE(-141/-134) (Xu et al., 2003) which is identical to the ERE (ATT-TCAAA) of carnation (GSTI), a gene associated with petal senescence (Itzhaki et al., 1994). However, this putative ERE in SmCP was not protected from DNase I (Xu et al., 2003). Hence further analysis of a larger 1.34-kb 5'-flanking region (Figure 1) was deemed necessary to locate other possible EREs and EEs to elucidate the regulation of SmCP expression. A second putative ERE (ATTTCAAA) identical to that in GSTIwas observed at -683/-676, while a third

```
(A)
 ERE(-355/-348)-wt
 ML312 tcgacGTGAATTTGTTAAAATTCAAGAGCATTGTTCc
 ML313
           gCACTTAAACAATTTTAAGTTCTCGTAACAAGgagct
 ERE(.355/.348).mut
 ML314 tcgacGTGAATTTGTTAACCGGTCCAAGCATTGTTCc
 ML315
            gCACTTAAACAATT GGCCAGGTTCGTAACAAGgagct
(B)
 Radiolabeled
                 ERE(-355/-348)-wt
                                      ERE(-355/-348)-mut
 probe
 Competitor r
            wt
  (100X)
           Lmut
            SF
  Nuclear
           LYF
   extracts
 Protein-DNA
 complex
 Free probe
                              5
                                 6
                                       8
                                          9
                                             10
(C)
Radiolabeled
                  ERE(-355/-348)-wt
                                    ERE(-355/-348)-mut
 probe
Competitor
            wt
          L mut
 (100X)
Nuclear
            ET
          L
extracts
            CO
Protein-DNA
complex
Free probe
                    2 3 4 5 6 7 8 9 10
(D)
     1
         2
```

(AATTCAAG) with two-nucleotide mismatches (underlined) was detected at -355/-348 (Figure 1). The 1.34-kb 5'-flanking region also contains putative EEs [(AA)AATATAT] at -795/-787 with

Figure 3. EMSAs on the ERE(-355/-348) in the SmCP promoter region. (A) Nucleotide sequences of double-stranded oligonucleotides in EMSAs. The mutated nucleotides in ERE(-355/-348)-mut and their corresponding sequences in ERE(-355/-348)-wt are shown in bold. Upper-case letters correspond to the region of the SmCP promoter with the putative ERE. Lower-case letters represent the additional sequences designed for end-labeling. (B) Interaction of nuclear proteins from S. melongena seedlings with ERE(-355/-348)-wt and ERE(-355/-348)-mut probes. Crude nuclear protein (10 μ g) from senescent fruits (SF in lanes 3, 5, 7, 9) or young fruits (YF in lanes 2, 4, 6, 8) was incubated with end-labeled ERE(-355/-348)-wt (lanes 1-7) or ERE(-355/-348)-mut (lanes 8-10), in the absence (lanes 2, 3, 8 and 9) or presence of a hundredfold molar excess of unlabeled competitor, ERE(-355/ -348)-wt (lanes 4 and 5) or ERE(-355/-348)-mut (lanes 6 and 7). Lanes 1 and 10 are free probes without addition of crude nuclear proteins. (C) Interaction of nuclear proteins from S. melongena seedlings with ERE(-355/-348)-wt and ERE(-355/-348)-mut probes. Crude nuclear protein (10 µg) from 5-week-old seedlings, treated with ethephon (ET in lanes 2, 4, 6, 8) or untreated (CO in lanes 3, 5, 7, 9), was incubated with end-labeled ERE(-355/348)-wt (lanes 1-7) or ERE(-355/ -348)-mut (lanes 8-10), in the absence (lanes 2, 3, 8 and 9) or presence of a hundredfold molar excess of unlabeled competitor, ERE(-355/-348)-wt (lanes 4 and 5) or ERE(-355/-348)mut (lanes 6 and 7). Lanes 1 and 10 are free probes without addition of crude nuclear proteins. (D) Northern blot analysis on the leaf samples harvested from 5-week-old S. melongena seedlings, used for nuclear protein extractions. The samples were harvested 24 h after the ethephon treatment. Control seedlings (lane 1) and ethephon-treated (lane 2). The northern blot with 20 µg total RNA per lane was hybridized to ³²Plabeled SmCP cDNA. Black arrowhead indicate the 1.5 kb SmCP mRNA and double arrowheads indicate 18S rRNA.

one nucleotide mismatch (underlined) to the consensus 9-nucleotide motif (AAAATATCT; Harmer *et al.*, 2000) and another at -785/-777(TTAATATCT) which retains only the 7-nucleotide core (AATATCT; Xu and Johnson, 2001).

Analysis and identification of EREs in the SmCP 5'-flanking region

To test the functional relevance of these putative elements in transcriptional regulation of SmCPexpression, a series of 5'-deletions progressively lacking the predicted elements were generated and fused upstream of the *GUS* reporter gene (Figure 2A). These *SmCP* promoter-*GUS* fusion genes were used in *Agrobacterium*-mediated transformation of tobacco. The transgenic lines thus obtained had different transgenic expression levels within the same constructs, depending upon the 636

(A) ERE(-683/-676)-wt ML304 tcgacGCTGACAATTTCAAATAAACCCTTCATCc gCGACTGTTAAA GTTTATTTGGGA AGTAGgagct MI.305 ERE(-683/-676)-mut ML306 tcgacGCTGACACGGGTCCCTAAACCCTTCATCc MI.307 gCGACTGT GCCCAGGGTTTGGGAAGTAGgaget (B) Radiolabeled probe ERE(-683/-676)-wt ERE(-683/-676)-mut Competitor wt [mut (100X) Nuclear SF [SF extracts Protein-DNA complex Free probe 2 3 4 5 6 8 9 10 1 7 (C) Radiolabeled probe ERE(-683/-676)-wt ERE(-683/-676)-mut Competitor wt. (100X) mut Nuclear - ET extracts LCO Protein-DNA complex Free probe 3 4 5 6

integration of the T-DNA. In order to keep the fluctuations in the expression levels of independent transformants and standard error of mean low, we analyzed three to five independent transformants expressing maximum GUS activity from all promoter-*GUS* constructs except pSm15 (which did not show any activity). The controls used in the

Figure 4. EMSAs on the ERE(-683/-676) in the SmCP promoter region. (A) Nucleotide sequences of double-stranded oligonucleotides in EMSAs. The mutated nucleotides in ERE(-683/-676)-mut and their corresponding sequences in ERE(-683/-676)-wt are shown in bold. Upper-case letters correspond to the region of the SmCP promoter with the putative ERE. Lower-case letters represent the additional sequences designed for end-labeling. (B) Interaction of nuclear proteins from S. melongena seedlings with ERE(-683/-676)-wt and ERE(-683/-676)-mut probes. Crude nuclear protein (10 μ g) from senescent fruits (SF lanes 2, 4, 6, 8) or young fruits (YF in lanes 3, 5, 7, 9) was incubated with end-labeled ERE(-683-676)-wt (lanes 1-7) or ERE(-683/-676)-mut (lanes 8-10), in the absence (lanes 2, 3, 8 and 9) or presence of a hundredfold molar excess of unlabeled competitor, ERE(-683/ -676)-wt (lanes 4 and 5) or ERE(-683/-676)-mut (lanes 6 and 7). Lanes 1 and 10 are free probes without addition of crude nuclear proteins. (C) Interaction of nuclear proteins from S. melongena seedlings with ERE(-683/-676)-wt and ERE(-683/-676)-mut probes. Crude nuclear protein (10 μ g) from five-week-old seedlings, treated with ethephon (ET in lanes 2, 4, 6, 8) or untreated (CO in lanes 3, 5, 7, 9), was incubated with end-labeled ERE(-683-676)-wt (lanes 1-7) or ERE(-683/-676)-mut (lanes 8-10), in the absence (lanes 2, 3, 8 and 9) or presence of a hundredfold molar excess of unlabeled competitor, ERE(-683/-676)-wt (lanes 4 and 5) or ERE(-683/ -676)-mut (lanes 6 and 7). Lanes 1 and 10 are free probes without addition of crude nuclear proteins.

assay were transformants of pBI101.3 (promoterless-GUS) and pBI121 (CaMV35S-GUS). As shown in Figure 2B, the GUS activities of both ethephontreated and untreated tissues were of the same low levels in lines transformed with pSm14(-127/+54), pSm13 (-155/+54) and pSm16 (-233/+54). Both pSm13 and pSm16 contain putative ERE(-141/ -134) which lacked protection in DNase I footprinting (Xu et al., 2003). EMSA studies also revealed that oligos corresponding to ERE(-141/ -134) did not bind nuclear proteins extracted from ethephon-treated or untreated leaves, senescent or young fruits (data not shown). Upon ethephon treatment, there were about threefold increases of GUS activities in tobacco lines transformed with pSm17 (-415/+54) and pSm11 (-498/+54) containing ERE(-355/-348) while about fivefold increases were seen in transformants of pSm114(-827)+54), pSm115 (-1012/+54) and pSm116 (-1343/ + 54) containing additional ERE(-683/-676).

Nuclear proteins interact with ERE(-355/-348)

To confirm the function of ERE(-355/-348), EMSAs was carried out using nuclear proteins

Figure 5. Effect of various SmCP 5'-end deletions and mutations in the EEs on circadian regulation of luc expression. (A) Schematic representation of the various constructs of SmCP promoter-luc. The black bars (not to the scale) represent different deletions in the 5'-flanking sequence of SmCP. The positions of the putative EEs are marked. (B) Nucleotide sequence of the SmCP promoter region between -795/-777 containing two EEs (bolded) and their corresponding mutations with nucleotide changes shown in italics. (C) Luciferase activity of tobacco lines transformed with various SmCP promoter-luc constructs pSm127 to pSm131 and mutant SmCP promoter-luc constructs pSm140 to pSm142. Samples were collected from 5-week-old tobacco seedlings grown at 24 °C under 12 h light/12 h dark period. Traces present average values (n = 3) from individual independent transgenic lines and error bars indicate standard error of mean. The bars beneath the graph indicate the light and dark regime, with subjective day indicated by white bars and subjective night indicated by black bars.

Time (hrs)

from senescent fruits (enriched with endogenous ethylene) or young fruits and annealed primer pair ML312/ML313 or its corresponding mutant ML314/315 (Figure 3A). The ERE(-355/-348)-wt probe showed binding to nuclear proteins from senescent (Figure 3B, lane 3) but not young fruits (Figure 3B, lane 2). In contrast, the corresponding ERE(-355/-348)-mut probe did not bind both senescent (Figure 3B, lane 9) and young fruit extracts (Figure 3B, lane 8). Addition of a hundredfold excess of unlabeled ERE(-355/-348)-wt competed and prevented the binding of labeled ERE(-355/-348)-wt to nuclear proteins from senescent fruits (Figure 3B, lane 5). The sequencespecific binding of the senescent fruit extract further demonstrated when unlabeled was ERE(-355/-348)-mut, could not compete out labeled ERE(-355/-348)-wt in binding (Figure 3B, lane 7).

The ERE(-355/-348) also showed binding to nuclear proteins from both untreated (Figure 3C, lane 2) and ethephon-treated *S. melongena* seedlings (Figure 3C, lane 3). Binding was competed by a hundredfold excess of unlabeled ERE(-355/-348)-wt, in both untreated (Figure 3C, lane 4) and ethephon-treated samples (Figure 3C, lane 5). In contrast, the corresponding ERE(-355/-348)mut, showed no binding to untreated (Figure 3C, lane 8) and ethephon-treated samples (Figure 3C, lane 9). Unlabeled ERE(-355/-348)-mut could not compete against labeled ERE(-355/-348)-wt in binding (Figures 3C, lanes 6–7), confirming binding specificity of the latter.

The ethephon-induction of SmCP in the tissues harvested for nuclear protein extracts was investigated by northern blot analysis on total RNA extracted from both ethephon-treated and control seedlings. The results show an induced SmCPexpression in the ethephon-treated sample in comparison to the control (Figure 3D).

Nuclear proteins interact with ERE(-683/-676)

Since MUG assays on transgenic tobacco have provided evidence that the putative ERE(-683/-676) is likely active (Figure 2C), EMSAs were used to confirm DNA-protein binding. The putative binding site was reconstituted by annealing the oligonucleotides ML304 and ML305 (Figure 4A). The annealed primers ML304/ML305 showed

(A)

638

EE(-795/-787 and -785/-777)-wt ML425 togac ATAATAATAATAATATATTTTAATATCTGAATTc ML426 gTATTATTATTTTATATAAAATTATA GACTTAAgaget

EE(-795/-787)-mut

ML427 togacATAATAATCCCCCCCCCCGTTTAATATCTGAATTc ML428 gTATTATTAGGGGCCGCGAAATTATAGACTTAAgagct

EE(-785/-777)-mut

ML581 tcgacATAATAATAAAAATATATATTGGCCGCGAGGAATTc ML582 gTATTATTATTATATAAACCGGCCGCTCCTTAAgaget

binding to nuclear proteins derived from senescent (Figure 4B, lane 2) but not young fruits (Figure 4B, lane 3). In contrast, the corresponding mutant probe (Figure 4A) showed no binding to nuclear proteins from both senescent (Figure 4B, lane 8) and young fruit (Figure 4B, lane 9). Addition of a hundredfold excess of unlabeled ERE(-683/-676)-wt competed out the binding of

Figure 6. EMSAs on the EE(-795/-787) and EE(-785/-777) in the SmCP promoter region. (A) Nucleotide sequences of double-stranded oligonucleotides used in EMSAs. The mutated nucleotides in EE(-795/-787)-mut, EE(-785/-777)-mut and their corresponding sequences in EEs(-795/-787 and -785/ -777)-wt are shown in bold. Upper-case letters correspond to the region of the SmCP promoter region with the putative EEs. Lower-case letters represent the additional sequences designed for end-labeling. (B) Interaction of nuclear proteins from S. melongena seedlings with EEs(-795/-787 and -785/-777)-wt or EE(-785/-777)-mut probes. Crude nuclear protein (3 μ g) from circadian-regulated 5-week-old seedlings at peak (HE in lanes 2, 4, 6, 8) or low (LE in lanes 3, 5, 7, 9) SmCP expression was incubated with end-labeled EEs(-795/-787 and -785/ -777)-wt or EE(-785/-777)-mut (lanes 8-10) in the absence (lanes 2, 3, 8 and 9) or presence of a hundredfold molar excess of unlabeled competitor, EEs(-795/-787 and -785/-777)-wt (lanes 4 and 5) or EE(-785/-777)-mut (lanes 6 and 7). Lanes 1 and 10 are free probes without addition of crude nuclear proteins. (C) Interaction of nuclear proteins from S. melongena seedlings with the EEs(-795/-787 and -785/-777)-wt and EE(-795/-787)-mut probes. Crude nuclear protein (3 µg) from circadian-regulated 5-week-old seedlings at peak (HE in lanes 2, 4, 6, 8) or low (LE in lanes 3, 5, 7, 9) SmCP expression was incubated with end-labeled EEs(-795/-787 and -785/-777)-wt (lanes 1-7) or EE(-795/-787)-mut (lanes 8-10) in the absence (lanes 2, 3, 8 and 9) or presence of a hundredfold molar excess of unlabeled competitor, EE (-795/-787 and -785/-777)-wt (lanes 4 and 5) or EE(-795/-777)-mut (lanes 6 and 7). Lanes 1 and 10 are free probes without addition of crude nuclear proteins.

labeled ERE(-683/-676)-wt with nuclear proteins from senescent fruits (Figure 4B, lane 4). The sequence-specificity was confirmed when unlabeled ERE(-683/-676)-mut did not compete out labeled ERE(-683/-676)-wt in binding (Figure 4B, lane 6).

In another set of EMSA experiments, the wildtype probe also showed binding to nuclear proteins from 5-week-old seedlings, irrespective of ethephon treatment (Figure 4C, lanes 2-3). In contrast, the corresponding mutant probe (Figure 4A) showed no binding to nuclear proteins from both ethephon-treated (Figure 4C, lane 8) and untreated seedlings (Figure 4C, lane 9). Addition of a hundredfold excess of unlabeled ERE(-683/-676)-wt competed out the binding of labeled ERE(-683/ -676)-wt to nuclear proteins irrespective of ethephon treatment (Figure 4C, lanes 4-5). The sequence-specific binding of nuclear proteins was further confirmed when unlabeled ERE(-683/ -676)-mut, consisting of the mutant ERE, could not compete against labeled ERE(-683/-676)-wt in binding (Figure 4C, lanes 6-7).

(A)

EE(-795/-787 and -785/-777)-wt ML425 tegac ATAATAATAATAATATATATTTTAATATCTGAATTc gTATTATTATTTATATATAAAATTATAGACTTAAgaget ML426 mutl(-795/-792) ML587 tegac ATAATAATCCCCTATATTTTAATATCTGAATTc ML588 gTATTATTAGGGGGATATAAAATTATAGACTTAAgagct mut2(-791/-788) ML589 tegac ATAATAATAAAAAGCGCTTTTAATATCTGAATTe gTATTATTATTTTCGCGAAAATTATAGACTTAAgagct ML590 mut3(-786/-784) ML591 tcgac ATAATAATAAAAATATAT GGGAATATCTGAATTc ML592 gTATTATTATTTTTATATACCCTTATAGACTTAAgagct mut4(-784/-781) ML585 tcgacATAATAATAAAAATATATTGCCGATCTAATTc gTATTATTATTATATATAACGGCTAGATTAAgagct ML586 mut5(-780/-777) ML583 tcgacATAATAATAAAAATATATTTTAATCGAGGAATTc ML584 gTATTATTATTTATATAAAATTAGCTCCTTAAgagct (B) Radiolabeled 12/1 mut1 mut2 mut3 mut4 mut5 probe Nuclear T HE + - + + + - + + extracts L LE Protein-DNA complex Free probe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 7. EMSA on the mutants of EEs in the SmCP promoter. (A) Nucleotide sequences of double-stranded oligonucleotides used in EMSA. The EEs(-795/-787 and -785/-777)wt and mutant derivatives (mut1 to mut5) are shown in bold. Upper-case letters correspond to the region of the SmCP promoter region with the putative EEs. Lower-case letters represent the additional sequences designed for end-labeling. (B) Interaction of nuclear proteins from S. melongena seedlings with the EEs(-795/-787 and -785/-777)-wt and mutant derivatives (mut1 to mut5) probes. Crude nuclear protein (3 μ g) from circadian-regulated 5-week-old seedlings at peak (HE in lanes 2, 5, 8, 11, 14, 17) or low (LE in lanes 3, 6, 9, 12, 15, 18) SmCP expression was incubated with end-labeled EEs(-795/ -787 and -785/-777)-wt (lanes 1-3), mut1 (lanes 4-6), mut2 (lanes 7-9), mut3 (lanes 10-12), mut4 (lanes 13-15) or mut5 (lanes 16-18) probes. Lanes 1, 4, 7, 10, 13 and 16 are free probes without addition of crude nuclear proteins.

Analysis and identification of EEs in the SmCP 5'-flanking region

Five deletions of the SmCP promoter (Figure 5A) ranging from the largest fragment (-1343/+54) to the smallest fragment (-415/+54) were analyzed to establish the molecular basis for circadian regulation with peak expression in late light. Seedlings of three independent tobacco lines transgenic for each SmCP promoter-luc construct were tested. Transgenic lines derived from pSm127 (-1343/ +54), pSm128 (-1060/+54) and pSm129 (-827/ +54) containing both putative EEs at -795/-787and -785/-777 showed rhythmic luciferase expression with peak expression in late light (Figure 5C). Transgenic lines derived from plasmids pSm130 (-498/+54) and pSm131 (-415/+54), which lack the putative EEs, were arrhythmic (Figure 5C), suggesting that the two putative EEs at -795/-787 and -785/-777 confer circadian regulation with peak expression in late light.

To determine which of the two putative EEs is necessary for this expression pattern, the putative EEs were individually or doubly mutated to generate reporter constructs pSm140 to pSm142 (Figure 5B). Analysis of the transgenic plants confirmed that when either one or both EEs were mutated, circadian regulation of luc was completely lost, indicating the significance of both in circadian regulation (Figure 5C).

Nuclear proteins interact with EEs (-795/-787 and -785/-777)

EMSAs on the EEs were investigated using ³²PdCTP-labeled probes consisting of annealed 40-mers ML425/ML426, corresponding to the two putative EEs (-795/-787 and -785/-777), and mutant oligomers ML581/ML582 and ML427/ ML428, corresponding to EE(-785/-777) and EE(-795/-785), respectively (Figure 6A). Nuclear proteins were prepared from 5-week-old S. melongena seedlings grown in 12 h dark and 12 h light at 24 °C, harvested at peak (17:00) and at low (06:00) circadian expression. The EEs(-795/-787 and -785/-777)-wt bind nuclear proteins from seedlings harvested at peak (Figure 6B and C, lanes 2) and low expression (Figure 6B and C, lanes 3). Addition of a tenfold excess of unlabeled EEs(-795/-787 and -785/-777)-wt in the reaction competed out the binding of the corresponding labeled probe (Figure 6B and C, lanes 4-5).

Specificity of binding at EE(-785/-777) was confirmed when unlabeled EE(-785/-777)-mut competitor failed to eliminate binding of labeled EEs(-795/-787 and -785/-777)-wt (Figure 6B, lanes 6–7). As expected, the labeled EE(-785/-777)-mut showed no binding to nuclear proteins prepared from seedlings at both peak (Figure 6B, lane 8) and low circadian expression (Figure 6B, lane 9). The sequence-specific binding of nuclear proteins to EE(-795/-787) was confirmed when labeled mutant probe EE(-795/-787)-mut did not bind nuclear proteins from seedlings at both peak (Figure 6C, lane 8) and low circadian expression (Figure 6C, lane 9). It was further confirmed when unlabeled EE(-795/-787)-mut, consisting of the mutant EE, could not compete out labeled EEs(-795/-787) and -785/-777)-wt in binding (Figure 6C, lanes 6–7).

The EEs (-795|-787 and -785|-777)show linked binding activity

Correlation of the activities of the two EEs, which are separated by three nucleotides, was investigated in EMSA using ³²P-dCTP-labeled probes. The wild-type probe, consisting of annealed ML425/ML426 (-795/-787 and -785/ -777) (Figure 7A), binds nuclear extracts at peak (Figure 7B, lane 2) as well as low circadian expression (Figure 7B, lane 3). The labeled mutant probes mut1 (ML587/ML588) and mut2 (ML589/ 590) (Figure 7A) which are partial mutations of EE(-795/-787) failed to bind either nuclear proteins (Figure 7B, lanes 5-6 and 8-9). Similarly, mut4 (ML585/ML586) and mut5 (ML583/584) (Figure 7A) which are partial mutations of EE(-785/-777) failed to bind some nuclear proteins at peak expression (Figure 7B, lanes 14–17) and there was no binding to nuclear proteins at low expression (Figure 7B, lanes 15-18). In contrast, mut3 (ML591/ML592) containing the mutated nucleotides (TTT) between the two EEs did not affect binding. Like the wild-type probe, it binds nuclear protein extract at peak (Figure 7B, lane 11) as well as low circadian expression (Figure 7B, lane 12).

DNase I footprinting analysis of EEs (-785/-777 and -795/-787)

Subsequently, DNase I footprinting was carried out on the coding stand of the *SmCP* promoter to confirm the binding of the putative EEs to nuclear proteins. Incubation of the ³²P-end-labeled -827/-706 *SmCP* promoter strand with nuclear proteins from leaves at peak or at low circadian expression revealed strong protected areas on the top strand from -795 to -781 and -771 to -762, and weaker protection in the adjacent regions between -807 to -794 and -782 to -770 (Figure 8).

Discussion

Although cysteine proteinase genes have been cloned from many plant species and shown to exhibit diverse expression patterns, reports on the characterization of their corresponding promoters in transcriptional regulation are limited. The promoter of EPB-I, a barley cysteine proteinase gene which is induced by gibberellins and repressed by abscisic acid, contains a gibberellin response element (GARE) as deduced by deletion and mutational analysis (Cercos et al., 1999). Unlike tobacco in which two genes, CYP-7 and CYP-8, encode cysteine proteinases, it is encoded by a single gene in brinjal (Xu and Chye, 1999), making its expression analysis simpler. Given the significance of SmCP in protein degradation likely in PCD-related events and that it is ethylene-inducible and circadian-regulated, an understanding on its control of expression was sought. Hence steps were taken in this study to identify and characterize its cis-elements. We analyzed ethephontreated and untreated transgenic tobacco seedlings expressing various SmCP promoter-GUS constructs to define the regions conferring ethyleneresponsive SmCP expression. We confirmed that the plants expressing constructs pSm13, pSm14 and pSm16 containing the putative ERE(-141/ -134) alone show lack of ethephon induction despite its close identity to the ERE of GST1 (ATTTCAAA). This is consistent with our previous observations (Xu et al., 2003) in the lack of this ERE in binding nuclear proteins in EMSA and in DNase I footprinting. Possibly ERE(-141/ -134) is non-functional or these deletion constructs lack further upstream elements that act synergistically with ERE(-141/-134). Deletion analysis also suggest that ERE(-355/-348) mediates a low-level ethylene-responsiveness which increases in the presence of an additional ERE(-683/-676). ERE(-355/-348) and its 5'-flanking nucleotide (in italics) AAATTCAAG share greater homology (nucleotide mismatch underlined) to that of tomato E4 (AAATTCAAA)

than to GST1 (GATTTCAAA). Similarly, ERE(-683/-676) AATTTCAAA also shares a significant homology to that of tomato E4.

Figure 8. In vitro DNase I footprinting analysis of the SmCP promoter using ³²P-dCTP-labeled probes containing the -827/ -706 region. (A) DNase I protection using nuclear extract from leaves at peak and low circadian expression. Lanes: 1, G/A, Maxam-Gilbert sequencing (G+A) reactions of the labeled promoter fragment used in localization of the protected region; 2 and 7, DNase I digestion pattern with BSA; 3 and 4, crude nuclear protein (100 and 150 μ g respectively) from leaves with peak SmCP expression; 5 and 6, crude nuclear protein (100 and 150 µg respectively) from leaves with low SmCP expression. Regions protected from DNase I digestion are denoted in black (strong protection) and red (weak protection). (B) DNA sequence of protected regions detected in (a). The SmCP promoter sequence from -815 to -746 is shown. Regions of strong protection are highlighted in grey and those of weak protection are in red.

Nuclear proteins have been shown to interact specifically with the EREs at the promoters of tomato E4 (Montgomery et al., 1993; Coupe and Deikman, 1997) and carnation GST1 (Itzaki et al., 1994; Maxson and Woodson, 1996). Senescent fruits have high endogenous ethylene in comparison to young fruits. Unlike the ERE of E4 which binds only nuclear proteins of unripe but not ripe fruits (Montgomery et al., 1993), the doublestranded oligos corresponding to ERE(-355/-348)and ERE(-683/-676) of SmCP, interact specifically with the nuclear proteins from senescent, but not young, fruits in EMSAs. Also, the EREs at -355/-348 and -683/-676 bind nuclear proteins from both ethephon-treated and untreated seedlings. The specificities of the interactions were verified by competition experiments in which only those oligomers, consisting of the conserved AATTTCAAA/G sequence, were able to compete in binding. A similar pattern of binding has been previously reported with the ERE of carnation GST1, which binds nuclear proteins from both senescent as well as presenescent petals (Maxson and Woodson, 1996). Possibly, different transcriptional factors bind to the same ERE under varying physiological conditions. The differences in the binding pattern of fruit and seedling nuclear proteins to the SmCP EREs indicate that organspecific factors may participate in binding.

Computational studies have identified a 9-nucleotide conserved EE motif (AAAATATCT) in the promoters of the circadian-regulated *Arabidopsis* genes that show peak expression in late light (Harmer *et al.*, 2000). The promoter of tobacco ZGT that is under such circadian

regulation contains two EEs (AAAATATCT at -178/-186 and AATATCT at -231/-237) ca. 50 nucleotides apart in an antisense orientation (Xu and Johnson, 2001). In contrast, those at the SmCP promoter are separated by only three nucleotides and are unidirectional. Deletion analysis and mutation experiments carried out in this study revealed that the two EEs of SmCP are functionally active and are important in mediating circadian regulation of luc. EMSAs using wild-type and various mutant probes within the EEs (-795/-777)suggest that they show co-operative activities. EMSAs with nuclear proteins harvested at peak or low-circadian expression suggest that both EEs show multiple DNA-protein complexes, implicating that two or more proteins either bind independently or form a protein complex via protein-protein interactions before binding to the same EE. Regions of strong and weak binding observed overlapping the location of the EEs on DNase I footprinting, is likely due to the conformation of the multi-protein complexes interacting on the EEs. Such complexes in EMSAs have been previously reported in the circadian-regulated CAB2 (lhcb1*1) promoter that shows peak expression in early light (Carre and Kay, 1995). Occurrence of protein-protein interactions are not uncommon in circadian control (Yanovsky and Kay, 2001) and such interacting proteins including ZEITLUPE (ZTL) (Somers et al., 2000) and FLAVIN-BINDING, KELCH REPEAT, F BOX 1 (FKF1) (Nelson et al., 2000) have already been identified in Arabidopsis. The sequence to which the transcription factors bind as identified by DNase I footprinting may extend beyond the actual EE consensus sequence if a large multi-transcription factor complex is interacting. It is known that the transcription factor TIIFD binds to the consensus TATAAAA sequence (TATA box), however, it protects a larger region of about 35 bp sequence around the TATA box in DNase I footprinting (Lewin, 1997). The ERE motif (AAATTCAAA) of the tomato E4 promoter also lies within a larger 20 bp region, protected from DNase I digestion (Montogomery et al., 1993).

The binding pattern of nuclear proteins to SmCP EEs at peak circadian expression varies from that at low, suggesting the possibility of different transcription factors binding to the same motifs under varying conditions. According to the model proposed by Alabadi *et al.* (2001) the

Myb-related transcription factors CCA1 and LHY bind to an EE (AAAATATCT) in the *TOC1* promoter and repress its expression. When the levels of CCA1 and LHY decline during the day, TOC1 accumulates and activates the transcription of *CCA1* and *LHY*, forming the base for transcriptional feedback loop. Several other genes and proteins involved in circadian clock regulation have been identified and investigations on their interaction should provide a more detailed molecular understanding of clock regulation.

Acknowledgements

We thank Drs. J. Tsang and W-K. Yip for provision of luminometer and scintillation counter, respectively. We are grateful to Dr. H-Y. Li for discussions. This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project HKU 7181/01M). A studentship (University of Hong Kong) to R.R. is acknowledged.

References

- Alabadí, D., Oyama, T., Yanovsky, M.J., Harmon, F.G., Mas, P. and Kay, S.A. 2001. Reciprocal regulation between *TOC1* and *LHY/CCA1* within the *Arabidopsis* circadian clock. Science 293: 880–883.
- Barak, S., Tobin, E.M., Andronis, C., Sugano, S. and Green, R.M. 2000. All in good time: the *Arabidopsis* circadian clock. Trends Plant Sci. 5: 517–522.
- Bleecker, A.B. and Kende, H. 2000. Ethylene: a gaseous signal molecule in plants. Annu. Rev. Cell Dev. Biol. 16: 1–18.
- Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.
- Carre, I.A. and Kay, S.A. 1995. Multiple DNA-protein complexes at a circadian-regulated promoter element. Plant Cell 7: 2039–2051.
- Cercos, M., Gomez-Cadenas, A. and Ho, T.-H.D. 1999. Hormonal regulation of a cysteine proteinase gene, *EPB-1*, in barley aleurone layers: cis- and trans-acting elements involved in the co-ordinated gene expression regulated by gibberellins and abscisic acid. Plant J. 19: 107–118.
- Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W. and Wei, N. 1998. *Arabidopsis* bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10: 673–683.
- Coupe, S.A. and Deikman, J. 1997. Characterization of a DNA-binding protein that interacts with 5' flanking regions of two fruit-ripening genes. Plant J. 11: 1207–1218.
- Dunlap, J.C. 1999. Molecular bases for circadian clocks. Cell 96: 271–290.

- Eyal, Y., Meller, Y., Lev-Yadun, S. and Fluhr, R. 1993. A basic-type PR-1 promoter directs ethylene responsiveness, vascular and abscission zone-specific expression. Plant J. 4: 225–234.
- Greenberg, J.T. and Ausubel, F.M. 1993. *Arabidopsis* mutants compromised for the control of cellular damage during pathogenesis and aging. Plant J. 4: 327–341.
- Hao, H., Allen, D.L. and Hardin, P.E. 1997. A circadian enhancer mediates PER-dependent mRNA cycling in *Drosophila melanogaster*. Mol. Cell Biol. 17: 3687–3693.
- Harmer, S.L., Hogenesch, J.B., Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A. and Kay, S.A. 2000. Orchestrated transcription of key pathways in *Arabidopsis* by the circadian clock. Science 290: 2110–2113.
- Itzhaki, H., Maxson, J.M. and Woodson, W.R. 1994. An ethylene-responsive enhancer element is involved in the senescence-related expression of the carnation glutathione-*S*-transferase (*GST1*) gene. Proc. Natl. Acad. Sci. USA 91: 8925–8929.
- Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. 1987. GUS fusions: β -glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901–3907.
- Lewin, B. 1997. Genes, VIth edn. Oxford University Press, New York.
- Linthorst, H.J.M., van der Does, C., Brederode, F.T. and Bol, J.F. and 1993. Circadian expression and induction by wounding of tobacco genes for cysteine proteinase. Plant Mol. Biol. 21: 685–694.
- Martinez-Garcia, J.F., Huq, E. and Quail, P.H. 2000. Direct targeting of light signals to a promoter element-bound transcription factor. Science 288: 859–863.
- Martino-Catt, S.J. and Kay, S.A. 1994. Optimization of DNase I footprinting experiments. In: S.B. Gelvin and R.A. Schilperoort (Eds.), Plant Molecular Biology Manual, 2nd edn. Kluwer Academic Publishers, Dordrecht, Netherlands, pp. 12/ 1–13.
- Matsushika, A., Makino, S., Kojima, M., Yamashino, T. and Mizuno, T. 2002. The APRR1/TOC1 quintet implicated in circadian rhythms of *Arabidopsis thaliana*: II. Characterization with CCA1-overexpressing plants. Plant Cell Physiol. 43: 118–122.
- Maxson, J.M. and Woodson, W.R. 1996. Cloning of a DNAbinding protein that interacts with the ethylene-responsive enhancer element of the carnation *GST1* gene. Plant Mol. Biol. 31: 751–759.
- Michael, T.P. and McClung, C.R. 2002. Phase-specific circadian clock regulatory elements in Arabidopsis. Plant Physiol. 130: 627–638.
- Montgomery, J., Goldman, S., Deikman, J., Margossian, L. and Fischer, R.L. 1993. Identification of an ethyleneresponsive region in the promoter of a fruit ripening gene. Proc. Natl. Acad. Sci. USA 90: 5939–5943.
- Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

- Nagy, F., Kay, S.A. and Chua, N.-H. 1988. Analysis of gene expression in transgenic plants. In: S.B. Gelvin and R.A. Schilperoot (Eds.), Plant Molecular Biology Manual, Kluwer Academic Publishers, Dordrecht, Netherlands, pp. B4/ 1–29.
- Nelson, D.C., Lasswell, J., Rogg, L.E., Cohen, M.A. and Bartel, B. 2000. *FKF1*, a clock-controlled gene that regulates the transition to flowering in *Arabidopsis*. Cell 101: 331–340.
- Ohme-Takagi, M. and Shinshi, H. 1990. Structure and expression of a tobacco β -1,3-glucanase gene. Plant Mol. Biol. 15: 941–946.
- Ohme-Takagi, M., Suzuki, K. and Shinshi, H. 2000. Regulation of ethylene-induced transcription of defense genes. Plant Cell Physiol. 41: 1187–1192.
- Ow, D.W., Wood, K.V., DeLuca, M., De Wet, J.R., Helinski, D.R. and Howell, S.H. 1986. Transient and stable expression of the firefly luciferase gene in plant cells and transgenic plants. Science 234: 856–859.
- Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbour Laboratory Press, Plainview, NY.
- Schaffer, R., Ramsay, N., Samach, A., Corden, S., Putterill, J., Carre, I.A. and Coupland, G. 1998. *The late elongated hypocotyl* mutation of *Arabidopsis* disrupts circadian rhythms and the photoperiodic control of flowering. Cell 93: 1219–1229.
- Somers, D. E., Schultz, T.F., Milnamow, M. and Kay, S.A. 2000. ZEITLUPE encodes a novel clock-associated PAS protein from Arabidopsis. Cell 101: 319–329.
- Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas, P., Panda, S., Kreps, J.A. and Kay, S.A. 2000. Cloning of the *Arabidopsis* clock gene *TOC1*, an autoregulatory response regulator homolog. Science 289: 768–771.
- Wang, Z.Y. and Tobin, E.M. 1998. Constitutive expression of the CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) gene disrupts circadian rhythms and suppresses its own expression. Cell 93: 1207–1217.
- Xu, F.X. and Chye, M.L. 1999. Expression of cysteine proteinase during developmental events associated with programmed cell death in brinjal. Plant J. 17: 321–327.
- Xu, Y. and Johnson, C.H. 2001. A clock- and light-regulated gene that links the circadian oscillator to *LHCB* gene expression. Plant Cell 13: 1411–1425.
- Xu, Z.F., Chye, M.L., Li, H.Y., Xu, F.X. and Yao, K.M. 2003. G-box binding coincides with increased *Solanum melongena* cysteine proteinase expression in senescent fruits and circadian-regulated leaves. Plant Mol. Biol. 51: 9–19.
- Yang, Y., Li, R. and Qi, M. 2000. *In vivo* analysis of plant promoters and transcription factors by agroinfiltration of tobacco leaves. Plant J. 22: 543–551.
- Yanovsky, M.J. and Kay, S.A. 2001. Signaling networks in the plant circadian system. Curr. Opin. Plant Biol. 4: 429-435.